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SUMMARY

A new modelling framework is presented for application to a range of three-dimensional (3D) multi-scale
oceanographic problems. The approach is based upon a finite element discretization on an unstructured
tetrahedral mesh which is optimized to represent highly complex geometries. Throughout a simulation
the mesh is dynamically adapted in 3D to optimize the representation of evolving solution structures. The
adaptive algorithm makes use of anisotropic measures of solution complexity and a load-balanced parallel
mesh optimization algorithm to vary resolution and allow long, thin elements to align with features such
as boundary layers. The modelling framework presented is quite different from the majority of ocean
models in use today, which are typically based on static-structured grids. Finite element (and volume)
methods on unstructured meshes are, however, gaining popularity in the oceanographic community. The
model presented here is novel in its use of unstructured meshes and anisotropic adaptivity in 3D, its ability
to represent a range of coupled multi-scale solution structures and to simulate non-hydrostatic dynamics.
Copyright q 2007 John Wiley & Sons, Ltd.

Received 30 April 2007; Revised 6 October 2007; Accepted 8 October 2007

KEY WORDS: ocean modelling; multi-scale; finite element; unstructured mesh; adaptivity; anisotropic

1. INTRODUCTION

New numerical methods based on unstructured meshes, and used in conjunction with anisotropic
mesh optimization methods, have the potential to revolutionize ocean modelling. Modelling the
oceans accurately demands methods that can represent highly complex domains, capture multi-
scale and anisotropic dynamics and replicate the strong coupling between the wide range of scales
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that are present. Small-scale processes, whose effects often cannot be satisfactorily captured using
subgrid-scale modelling, feed strongly into the large-scale dynamics and vice versa. Therefore,
this application area demands the most advanced parallel numerical methods, adaptive algorithms
and computational platforms.

Here a new methodology is presented, for which the goal is an ocean model that seeks to auto-
matically maximize computational efficiency through the use of robust finite element discretizations
on unstructured meshes in three dimensions (3D) in conjunction with parallel anisotropic mesh
adaptivity algorithms. For background material and reviews of the literature, including discussions
of other models and numerical approaches different to those presented here, see [1–4] and the
references therein.

In the following sections the underlying equations and discretization are presented, as are
methods for generating high-quality discrete domains. A brief background on the adaptive proce-
dures used here is given for completeness. Issues associated with the standard discretization for
problems where buoyancy and rotational effects are dominant are discussed and possible solutions
given. Some preliminary examples in 2D and 3D are also presented.

2. BACKGROUND TO THE NUMERICAL MODEL

2.1. Underlying equations

The starting point for this work is the 3D non-hydrostatic Boussinesq equations in a domain
V ⊂R3:

�u
�t

+(u− û) ·∇u+2X×u=−∇ p−g∇�−�gk+∇ ·s+F (1a)

∇ ·u=0 (1b)

�T
�t

+(u− û) ·∇T =∇ ·(jT∇T ) (1c)

�≡�(T ) (1d)

where u is the 3D velocity vector, û is used to account for a moving reference frame, e.g. to account
for a moving mesh representing a free surface whose height is given by �. t represents time, p
is the perturbation pressure, g is the acceleration due to gravity and � is the perturbation density.
The simplifying assumption that buoyancy acts in the k=(0,0,1)T direction has been made, this
assumption can easily be generalized. When simulating large-scale domains, such as the entire
globe, Cartesian (rather than spherical) coordinates are preserved and then buoyancy takes the
form of a vector field acting in the direction pointing towards the globe’s centre of mass. T is the
temperature, but additional scalar fields such as salinity and tracers can be dealt with analogously,
in which case they may be included in the equation of state (1d). The deviatoric stress tensor is
used to model viscous effects and is given by si j =2li j (Si j −�i j∇ ·u/3), where l is the tensor of
viscosities (the diagonal of which is user defined, with off diagonals defined via li j =√li il j j ),
�i j is the Kronecker delta and Si j =�ui/�x j +�u j/�xi is the strain rate tensor. jT is the thermal
(or saline for salinity, etc.) diffusivity tensor, assumed here to be diagonal. The rotation vector
is X=(0,0,�z)

T, where �z =7.292×10−5 rads−1 for calculations on the globe. For simulations
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in flat geometries the f -plane approximation can be used for relatively small domains where
2X=(0,0,�z sin(�0))

T and �0 is the assumed latitude for the domain; for larger ‘flat’ domains
the �-plane approximation is often used, where 2X=(0,0,�z sin(�0)+�y)T, �=2�z cos(�0)/RE
and RE is the radius of the globe. Finally, F contains additional source terms such as astronomical
tidal forcing.

2.2. A numerical discretization based on standard finite elements

The domain V is assumed to be partitioned with an unstructured mesh of tetrahedra. Let N
denote the number of nodes in the mesh, which will be time dependent. For simplicity, continuous
piecewise-linear finite element basis functions {�i } are assumed here. Numerical approximations
to the velocity, pressure, free surface and temperature (and other scalars) are represented as

u≡(u,v,w)T≈
N∑
j=1

(u j (t),uN+ j (t),u2N+ j (t))
T� j (x), p≈

N∑
j=1

p j� j (x)

�≈
N∑
j=1
g j (t)� j (x), T ≈

N∑
j=1

T j (t)� j (x)

This form for u, p,� and T is substituted into (1). Galerkin projection in space and theta differencing
in time (�= 1

2 , or Crank–Nicolson is employed here to ensure second-order temporal accuracy)
results in the discrete momentum equation which in acceleration form is

(ML +��t A)

(
un+1−un

�t

)
=−Aun+Cpn+1/2+gC�g

n+1/2−Gq′n+1/2+fn+1/2 (2)

the discrete continuity equation

CTun+1=0 (3)

and the discrete temperature (and other scalars) equation

(M ′
L +��t H)Tn+1=(M ′

L −(1−�)�t H)Tn

For simplicity, homogeneous Neumann boundary conditions s·n− pn=0,n·(j∇T )=0 (i.e. free
stress and zero heat flux) have been assumed. Superscripts refer to the time level, �t is the time
step size and A≡ A(ũ)=N (ũ)+L−D, which is defined in more detail below. M ′

L and ML are
the diagonal lumped mass matrices obtained by row summing M ′ and M given by

M≡diag(M ′,M ′,M ′) where M ′
i j =

∫
V

�i (x)� j (x)dV for 1�i, j�N

The Coriolis and buoyancy terms are represented via

L≡2�z

⎛
⎜⎜⎝

0 −M ′ 0

M ′ 0 0

0 0 0

⎞
⎟⎟⎠ , G≡g

⎛
⎜⎜⎝
0 0 0

0 0 0

0 0 M ′

⎞
⎟⎟⎠ , q′ ≡

⎛
⎜⎜⎝
0

0

q

⎞
⎟⎟⎠
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Discretization of the nonlinear advection terms results in the matrix N (ũ) given by

N (ũ)≡diag(N ′,N ′,N ′) where N ′
i j (ũ)=

∫
V

�i (x)ũ·∇� j (x)dV for 1�i, j�N

which is linearized using ũ=un during the first Picard iteration used to solve the nonlinear system
and ũ=�un+1+(1−�)un in subsequent iterations. In the results to be presented two iterations
have been used as this is sufficient to preserve second-order temporal accuracy. The matrix D
represents a discretization of the viscous terms that are considered in stress form in this framework
and are hence too lengthy to detail here. It does, however, follow all the above conventions, for
further background see [5]. The vector f contains any additional external forcing. The matrix −C
represents a discretization of the gradient operator where

C≡(C1,C2,C3)T, Cq
i j =

∫
V

� j (x)
��i (x)
�xq

dV, 1�i, j�N , q=1,2,3

C� is defined similarly and CT is a representation of the discrete divergence operator. Finally the
matrix H is defined by

Hi j =
∫
V

(
�i ũ

n ·∇� j +jlm
�� j

�xm

��i

�xl

)
dV for 1�i, j�N

Although a Galerkin (i.e. non-stabilized, non-dissipative) method is used for momentum here, a
flux-limited control volume finite element extension to the above is used for tracer fields in the
results to be presented in order to guarantee boundedness and stability. Details of the discretization
method for advancing g are not reported here due to space limitations; it will, however, be the
subject of future publications. Further details may be found in [6–8].

2.3. A projection-based solution procedure for velocity and pressure

For computational efficiency a projection method is used to decouple the solution procedure for
velocity and pressure. The method proceeds by first solving (2) for a velocity prediction un+1∗
using the old pressure pn−1/2 in place of pn+1/2. In general, un+1∗ will not satisfy the discrete
continuity equation (3) and, hence, velocity and pressure are modified to ensure a divergence-free
velocity field at the end of every time step. A discrete irrotational correction of the form

MLun+1=MLun+1∗ +�tC�p (4)

is sought to ensure CTun+1=0. Multiplying (4) by CTM−1
L , and applying (3), yields the following

discretized elliptic problem for �p:

CTM−1
L C�p=−CTun+1∗

�t

At this point a pressure filter is included to remove singularities in this discretization method,
whereby a matrix K representing a discretization of a fourth-order operator is applied. There are
several options for stabilizing equal-order element pairs such as the piecewise-linear elements
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used here. For a discussion, including a second-order version of the approach taken here, see [5]
(p. 535). The matrix K takes the form K =QTM−1

L Q, where the matrix Q is given by

Qi j = 1

2

∫
V
(∇�i )

Th∇� j dV

and h is a tensor representing the anisotropic local size of elements. The discrete equation for the
pressure update then becomes

(CTM−1
L C+K )�p=−CTun+1∗

�t
−Kpn+1/2∗ (5)

where pn+1/2∗ is the pressure at the new time level from the previous nonlinear iteration. This
is equivalent to replacing the discrete continuity equation with CTun+1+�t Kpn+1/2=0. This
stabilization approach is attractive since it does not violate global mass conservation. Using the
solution �p from (5), un+1 is obtained from (4), and pressure updated via pn+1/2=pn+1/2∗ +�p.
During the first nonlinear iteration pn+1/2∗ =pn−1/2.

3. ANISOTROPIC MESH ADAPTIVITY IN PARALLEL

3.1. Estimates of discretization error

Once the discretization underlying the modelling framework is in place a robust method to optimize
the computational mesh is required. Mesh optimization is used dynamically to best represent
evolving solution structures and reduce discretization errors. The starting point is a solution-
dependent error measure that varies in space and time and yields the desired mesh resolution. The
approach is motivated by the need to identify anisotropy in the solution structures; hence, these
can be built into the eventual adapted mesh. Anisotropy is crucial in this application area since
structures such as boundary layers are prevalent and exert enormous influence on both large and
small-scale dynamics, e.g. the Gulf Stream.

This is achieved here using interpolation error-based measures that are cheap to compute, yield
directional information and give a good guide to problem complexity. The approach boils down to
the construction of a metric tensor field that is used to measure element edge lengths, and returns
unit lengths for elements that are of the appropriate shape and size in metric space. The metric
is built upon the Hessian matrix field for each solution component and user-defined definitions of
(spatially varying) desired errors and incorporates maximum and minimum allowed edge lengths.
See [9] for a more thorough description of the algorithm.

Since the form of this error measure includes a user-defined weight and a measure of anisotropy,
the anisotropy can be preserved while building extra isotropic but inhomogeneous information into
the weight. For example, in addition to including regional preference, this is a simple means to
combine anisotropic a priori and isotropic a posteriori information, e.g. [10].

3.2. Mesh optimization

Following the construction of the metric, a functional is formed whose minimization ensures a
mesh whose elements are appropriately shaped and sized, that is, they are uniform equilateral
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elements in metric space. An optimization procedure that visits elements in the mesh and performs
topological operations on local connectivity then drives down this functional, and hence adapts
the mesh. The operations permitted on the mesh are edge split—a node is inserted at the centre
of an edge and surrounding elements created; edge collapse—all elements belonging to the edge
are deleted and the two nodes of the edge collapsed to its centre, in cases where one of the nodes
is used to define the domain geometry or internal structures the nodes are collapsed to that point,
if both nodes define some geometrical structure then this operation is not permitted; edge–face
swap—if two tetrahedra share a common face, and provided their combined interior is convex, the
face is deleted and a new edge introduced between the two nodes not shared thus producing three
tetrahedra with different alignments, the inverse operation where an edge is replaced by a face
is also allowed; edge–edge swap—elements that lie around an edge are replaced by a new edge
resulting in elements with different alignments; node movement—the local topology of the mesh
is preserved, but mesh quality is improved by visiting each node and applying a hill climbing
algorithm to locate the node in the position that minimizes the maximum functional value of the
surrounding elements.

3.3. A load-balanced model in parallel with changing resolution and computational requirements

In order to parallelize the model, dynamic load balancing needs to be given primary impor-
tance. Large load imbalances are to be expected following mesh optimization which will be
highly detrimental to parallel computational efficiency. Thus, the mesh needs to be repartitioned
among the processors involved in the computation, here this is achieved using the graph parti-
tioner ParMetis.§ The number of nodes assigned to a partition/processor is assumed to be a
good proxy for the expected computational load on that processor and, hence, one aim of the
algorithm is to equidistribute nodes. Other requirements include a minimization of edge cut and
data migration. The parallel algorithm first applies the serial mesh optimization method within
each sub-domain independently while disallowing any modification to be made to the sub-domain
interfaces. Following this, the graph partitioner produces a new decomposition of the mesh which
re-balances the number of nodes. In addition to this, weights are applied to the graph edges such
that edges associated with poor elements have high weights and are therefore less likely to be
split by a partition. This choice of edge weight has the effect of perturbing partitions away from
elements that require optimization. This may include elements that were previously fixed due to
their location on sub-domain interfaces. Diffusion repartitioning is used by default to minimize
data migration, scratch remapping is also used periodically to remove any islands that can occur
with diffusion alone. For further details see [11].

3.4. Example 1: The backward-facing step computed with mesh adaptivity on 16 processors

The backward-facing step is a classical computational fluid dynamics example and one of the most
frequently selected problems for simulating the separation and reattachment of turbulent flows.
It is also often used as a test problem for validating numerical codes. In the context of ocean
modelling flow separation is important in large-scale western boundary currents such as the Gulf
Stream. Accurate experimental results for a wide range of flow regimes exist (e.g. see [12]) and
the problem has several important flow characteristics, such as the reattachment length (which

§ParMetis: http://glaros.dtc.umn.edu/gkhome/views/metis.
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Figure 1. Simulation of flow past a backward-facing step, the domain is 55×0.1×2 units in size—only
subsets of which are shown. The step is of unit height and located 5 units from the left-hand boundary
where a parabolic inflow of unit magnitude is applied. A passive tracer field, set to unity on upper and
lower boundaries, is shown in the upper panels to aid visualization of the mixing processes. The adapted
mesh on one lateral boundary (the problem is set up to be quasi-2D) is shown in the middle panels and
the adapting domain decomposition shown in the lower panels where the extended dark blue region is the
halo. A ‘do-nothing’ outflow condition is applied at the right-hand boundary, with no slip conditions on
the upper and lower boundaries and free slip on lateral boundaries. The time step is 0.02 and results are
shown at times 5, 25 and 45 where there are 39 726, 585 717 and 727 974 nodes in the mesh, respectively.
Viscosity is set to 10−4, and the interpolation error weights are set to 0.005 for u and w and are effectively

infinite for v and the tracer field.

occurs at approximately 8 step heights length downstream of the step at high Reynolds numbers).
See Figure 1 for an example solution where the evolution of a passive tracer, the adapted mesh
and the load-balanced domain decomposition are displayed. The results are consistent with the
expected reattachment length.

4. OPTIMAL DOMAIN REPRESENTATION AND MESH GENERATION

Since it exerts a critical influence over the dynamics of the ocean, a high-quality discrete repre-
sentation of the physical domain in question is vital. In practice, there is a trade-off between
how close the discretized domain is to reality, and how appropriate it is for numerical modelling
with finite computational resources. Hence, the constructed computational mesh representing the
geometry should be optimized to attain a specified error when compared with ‘reality’ while using
a minimum number of nodes. To achieve this, methods similar to those presented in Section 3 are
employed.

The first stage in the construction of a computational domain is an approximation of the shoreline
for the region of interest. The simplest option is to take and optimize the zero depth contour from
the bathymetry data set. Here a distance to edge criteria are used where the shoreline data at highest
resolution are iteratively simplified/coarsened so as to remain within a user-defined distance to
edge criterion. Figure 2 shows the result of this operation starting from the zero depth 2min
GEBCO data set and varying the distance to edge tolerance. Figure 3 then shows the resulting
unstructured mesh which again starts from the highest resolution raw data and coarsens to achieve
a user-defined interpolation error everywhere. Anisotropic estimates of the error are used which
results in anisotropic meshes conforming to ridges, shelf breaks, seamounts, etc. Two approaches

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 56:1003–1015
DOI: 10.1002/fld
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Figure 2. Representation of the shoreline in a section of the Mediterranean Sea. The figures
show the results with distance to edge tolerances of 40, 10 and 2.5 km. The entire region
includes all shoreline in the longitude–latitude box [−10,30]×[28,48]. The number of points
representing the shoreline is, respectively, 155, 670 and 3007. The raw data are the zero

contours from the GEBCO bathymetric data set.

Figure 3. Representation of the bathymetry in the Mediterranean Sea, optimized from GEBCO
bathymetric data subsampled initially to 2min. The image on the left shows the result using
a bathymetry interpolation error tolerance of 200m and comprises 59 748 nodes and 172 041
elements. The image on the right shows the result using a relative bathymetry interpolation
error tolerance of 3.5 and comprises 70 638 nodes and 197 679 elements, but this includes
many outside of the Mediterranean in the longitude–latitude box [−10,30]×[28,48], not all
of which is displayed. The improved representation of shallows can be seen in the mesh
based on the relative error; in particular, the Straits of Gibraltar have not been artificially
closed off. Also note the improved representation of other shallow region such as the Adriatic

and Aegean Seas and the Gulf of Gabes.

are compared where the user-defined interpolation error takes (1) a constant absolute value and
(2) a relative (to the depth of the ocean) interpolation error. For further details and examples
see [13, 14].

5. AN EXTENSION TO THE BASIC DISCRETIZATION FOR BALANCE IN
LARGE-SCALE GEOPHYSICAL PROBLEMS

An interesting problem occurs with standard velocity–pressure finite element pairs for large scale
geophysical problems (i.e. problems where strong stratification and rapid rotation are present).
This relates to the magnitude of the Coriolis and buoyancy terms in comparison with the other
terms in the momentum equations. The dominant Coriolis and buoyancy terms are largely balanced
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Figure 4. Example 2: Density isosurface and mesh on the surface of the domain after 60 h in
stratified flow past an isolated Gaussian seamount. The image on the left shows the results when
the ‘balanced’ pressure solver is employed to treat both Coriolis and buoyancy (31 669 nodes); the
middle image show the results when only the hydrostatic pressure solver was employed (65 658
nodes); the image on the right shows the result when no special treatment of either Coriolis or

buoyancy forces is used (79 915 nodes). See also [2].

(in states of hydrostatic and geostrophic balance this relationship is exact) by the gradient of a
pressure, i.e.

2X×u+�g≈∇ phg (6)

where phg is a component of the full dynamic pressure. With any standard finite element discretiza-
tion a problem is immediately evident. Velocity and density are typically represented with piecewise
polynomials of the same order (here linear) and pressure to the same or often lower order (here
also linear). Equation (6) can therefore be subject to numerical errors that can result in large
spurious accelerations. Within the modelling framework described here, two techniques have been
successful in reducing this spurious behaviour to levels where meaningful simulations may be
conducted.

The first approach, which deals with buoyancy only, splits full pressure into a ‘hydrostatic
pressure’ ph and a ‘non-hydrostatic pressure’ pnh. ph is assumed to balance the buoyancy force in
the momentum equations: �ph/�z=−�g. The problematic buoyancy term and vertical derivative
of ph can then be dropped from the vertical momentum equation but the horizontal derivatives of ph
must be included in the horizontal momentum equations. At first sight nothing has been achieved,
but through this decomposition of pressure ph can be calculated more accurately (e.g. with higher-
order discontinuous elements), while pnh which still plays the role of ensuring a divergence-free
velocity field can be calculated using a standard and (e.g. LBB) stable finite element pair. The
results presented in Section 6.3 used this method as does the central image in Figure 4.

An alternative but related method can be derived by first decomposing the problematic forcing
terms into divergence and curl-free parts:

2�×u+�g=∇×A−∇ phg (7)

where phg is the ‘hydrostatic–geostrophic’ component of the full pressure. In states close to
balance ∇×A is a small residual term, the difference of two large terms, which for standard
finite element pairs could exhibit large spurious errors for the reasons outlined above. As before,
an improved method results from calculating ∇×A more accurately and then substituting this
into the momentum equations instead of the problematic Coriolis and buoyancy terms. There are

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 56:1003–1015
DOI: 10.1002/fld



1012 M. D. PIGGOTT ET AL.

two obvious ways to proceed, either by taking the curl or divergence of (7) and both have been
pursued. The method that takes the divergence of (7) ultimately solves an elliptic equation for
phg. Following the same philosophy as above, phg is calculated using piecewise polynomials of
higher order than those used to represent velocity and density, here quadratics are used. The new
source term ∇×A is then recovered from (7) by taking the difference of two known terms. The
first image in Figure 4 uses this approach; it can be seen to be the most stable and hence it
uses fewer nodes since the adaptive algorithm does not waste resources trying to resolve spurious
noise.

6. FURTHER EXAMPLES

6.1. Example 3: differentially heated rotating annulus

Sloping convection in a differentially heated rotating annulus represents an ideal test problem
with which to help validate a new ocean model. It encompasses non-hydrostatic dynamics and the
effects of rotation, buoyancy, external forcing and closed non-trivial geometry. The problem set-up
and parameters match [15] (their Figure 4 with rotation rate �z =3.91rads−1). Figure 5 shows
results at two time levels. The first at the time when the maximum number of nodes is used, which
corresponds to the maximum of the two norms of the velocity field; the second shows a later time
when the system has settled into the expected mode five structure.
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Figure 5. Temperature field and mesh at the upper surface for the rotating annulus problem at times 87
and 200 s. Also shown are the two norm of the velocity field and total number of nodes.
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Figure 6. Western boundary current simulation at Reynolds numbers 625, 2500 and 10 000. Meshes are
shown after approximately one year of simulation time and contain 5609, 14 817 and 36 848 nodes.

Figure 7. Mesh and velocity vectors in a flat-bottomed domain with a shoreline from the Mediterranean
Sea. The simulation comprises 54 255 nodes at this time level.

6.2. Example 4: barotropic wind-driven circulation and western boundary currents

In this problem, a flat-bottomed domain of square horizontal extent 1000 km and 500m depth on
a beta plane with �=1.8×10−11m−1 s−1 is forced with a wind stress of strength �0=0.1Nm−2

which varies as a sine of latitude and sets up an anti-cyclonic gyre. Owing to the variable strength
of rotation an intense western boundary is formed. Figure 6 presents results after approximately
one year of simulated time. Figure 7 shows results from a similar simulation with Mediterranean
shoreline.

6.3. Example 5: tidally forced internal wave breaking at a shelf break of critical slope

Adaptive simulations of the interaction of an internal gravity wave with a shelf break of crit-
ical slope have been conducted following [16]. Parameters and model domain have been set up
to closely match their ‘highly nonlinear’ case. The problem is forced at the left-hand boundary
with a first-mode internal wave which interacts with an idealized shelf break that is of crit-
ical slope. Figure 8 shows the wave breaking and a bolus of dense water propagating along
the shelf.
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Figure 8. Density field and mesh for internal wave breaking at a shelf break of critical slope at 4.6 and
5.6 times the wave period T . Overturning of the isopycnals and ‘bolus’ propagation can be seen.
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Figure 9. Amplitude from M2 (left) and K1 (right) Mediterranean tidal simulations. The mesh is
constructed on the surface of an assumed sphere representing the surface of the Earth. The fixed mesh

contains 179 726 and 518 955 nodes and is constructed following the methodology of Section 4.

6.4. Example 6: tides in the Mediterranean Sea

Figure 9 shows results from tidal simulations in the Mediterranean Sea. The simulation is forced
with the astronomical tide, and a free surface height taken from the FES2004 global tide model
[17] is imposed at the open boundary to the West. The main patterns of the M2 (principal lunar
semi-diurnal) tidal constituent match those of [18] well. Amphidromic points are present in the
same parts of the sea as [18], i.e. the north-central Adriatic, between Crete and Lybia, Sicilian
Channel, southwest of the Balearic Islands. Areas of tidal amplification are also correctly located,
i.e. northern Adriatic, northern Aegean, Gulf of Gabes and the eastern end of the Mediterranean.
Similarly, promising results are obtained for the K1 and other constituents tested. For further
details and examples, see [8].

7. CONCLUDING REMARKS

A new approach to ocean modelling in 3D which is applicable to both the large and small scales
simultaneously has been presented. Anisotropic mesh optimization and parallel methods are used
together to efficiently achieve high spatial resolution where and when appropriate. Preference for
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the vertical direction can be included, and should emerge naturally by the use of appropriate
error measures that are currently under development. Other algorithmic developments include data
assimilation capabilities via an adjoint to the model which takes into account the evolving mesh,
and the use of mesh movement to track structures such as density levels. Work is also ongoing
on further validation and additional applications, especially those where small-scale processes
have important impacts on the larger scale and vice versa, these will be the subject of future
publications.
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